tmp10.py 1.3 KB

123456789101112131415161718192021222324252627282930313233343536373839
  1. from qdrant_client import QdrantClient
  2. from qdrant_client.models import Distance, VectorParams
  3. from qdrant_client.models import PointStruct
  4. client = QdrantClient(path="my_qdrant")
  5. def create_collection():
  6. client.create_collection(
  7. collection_name="test_collection",
  8. vectors_config=VectorParams(size=4, distance=Distance.DOT),
  9. )
  10. def add_vectors():
  11. operation_info = client.upsert(
  12. collection_name="test_collection",
  13. wait=True,
  14. points=[
  15. PointStruct(id=1, vector=[0.05, 0.61, 0.76, 0.74], payload={"city": "Berlin"}),
  16. PointStruct(id=2, vector=[0.19, 0.81, 0.75, 0.11], payload={"city": "London"}),
  17. PointStruct(id=3, vector=[0.36, 0.55, 0.47, 0.94], payload={"city": "Moscow"}),
  18. PointStruct(id=4, vector=[0.18, 0.01, 0.85, 0.80], payload={"city": "New York"}),
  19. PointStruct(id=5, vector=[0.24, 0.18, 0.22, 0.44], payload={"city": "Beijing"}),
  20. PointStruct(id=6, vector=[0.35, 0.08, 0.11, 0.44], payload={"city": "Mumbai"}),
  21. ],
  22. )
  23. print(operation_info)
  24. def query():
  25. search_result = client.search(
  26. collection_name="test_collection", query_vector=[0.2, 0.1, 0.9, 0.7], limit=3, with_vectors=True
  27. )
  28. print(search_result)
  29. # create_collection()