from qdrant_client import QdrantClient from qdrant_client.models import Distance, VectorParams from qdrant_client.models import PointStruct client = QdrantClient(path="my_qdrant") def create_collection(): client.create_collection( collection_name="test_collection", vectors_config=VectorParams(size=4, distance=Distance.DOT), ) def add_vectors(): operation_info = client.upsert( collection_name="test_collection", wait=True, points=[ PointStruct(id=1, vector=[0.05, 0.61, 0.76, 0.74], payload={"city": "Berlin"}), PointStruct(id=2, vector=[0.19, 0.81, 0.75, 0.11], payload={"city": "London"}), PointStruct(id=3, vector=[0.36, 0.55, 0.47, 0.94], payload={"city": "Moscow"}), PointStruct(id=4, vector=[0.18, 0.01, 0.85, 0.80], payload={"city": "New York"}), PointStruct(id=5, vector=[0.24, 0.18, 0.22, 0.44], payload={"city": "Beijing"}), PointStruct(id=6, vector=[0.35, 0.08, 0.11, 0.44], payload={"city": "Mumbai"}), ], ) print(operation_info) def query(): search_result = client.search( collection_name="test_collection", query_vector=[0.2, 0.1, 0.9, 0.7], limit=3, with_vectors=True ) print(search_result) # create_collection()