echarts3.html 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. <!doctype html>
  2. <html lang="en">
  3. <head>
  4. <meta charset="UTF-8">
  5. <title>统计图表-WeAdmin Frame型后台管理系统-WeAdmin 1.0</title>
  6. <meta name="renderer" content="webkit|ie-comp|ie-stand">
  7. <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
  8. <meta name="viewport" content="width=device-width, initial-scale=1.0, minimum-scale=1.0, maximum-scale=1.0, user-scalable=0">
  9. <meta http-equiv="Cache-Control" content="no-siteapp" />
  10. <link rel="stylesheet" href="../../static/css/font.css">
  11. <link rel="stylesheet" href="../../static/css/weadmin.css">
  12. </head>
  13. <body>
  14. <div class="weadmin-body">
  15. <blockquote class="layui-elem-quote">
  16. 特别声明:ECharts,一个纯 Javascript 的图表库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等),底层依赖轻量级的 Canvas 类库 ZRender,提供直观,生动,可交互,可高度个性化定制的数据可视化图表。WeAdmin提示:如需使用或者详细更多案例可以访问官网 <a href="http://echarts.baidu.com/" style="color:red">ECharts</a>。
  17. </blockquote>
  18. <!-- 为 ECharts 准备一个具备大小(宽高)的 DOM -->
  19. <div id="main" style="width: 100%;height:400px;"></div>
  20. <blockquote class="layui-elem-quote">
  21. 注意:本案例的Echarts图表库由cdn引入,需要在线才能正常使用,若要离线使用,请至Echarts官网下载。
  22. </blockquote>
  23. </div>
  24. <script src="//cdn.bootcss.com/echarts/4.0.2/echarts.min.js"></script>
  25. <script src="//cdn.bootcss.com/echarts/4.0.2/extension/bmap.min.js"></script>
  26. <script src="http://echarts.baidu.com/asset/map/js/china.js"></script>
  27. <!--<script type="text/javascript" src="http://echarts.baidu.com/gallery/vendors/echarts/map/js/china.js"></script>-->
  28. <script type="text/javascript">
  29. // 基于准备好的dom,初始化echarts实例
  30. var myChart = echarts.init(document.getElementById('main'));
  31. myChart.setOption({
  32. series: [{
  33. type: 'map',
  34. map: 'china'
  35. }]
  36. });
  37. // 指定图表的配置项和数据
  38. var geoCoordMap = {
  39. '上海': [121.4648,31.2891],
  40. '东莞': [113.8953,22.901],
  41. '东营': [118.7073,37.5513],
  42. '中山': [113.4229,22.478],
  43. '临汾': [111.4783,36.1615],
  44. '临沂': [118.3118,35.2936],
  45. '丹东': [124.541,40.4242],
  46. '丽水': [119.5642,28.1854],
  47. '乌鲁木齐': [87.9236,43.5883],
  48. '佛山': [112.8955,23.1097],
  49. '保定': [115.0488,39.0948],
  50. '兰州': [103.5901,36.3043],
  51. '包头': [110.3467,41.4899],
  52. '北京': [116.4551,40.2539],
  53. '北海': [109.314,21.6211],
  54. '南京': [118.8062,31.9208],
  55. '南宁': [108.479,23.1152],
  56. '南昌': [116.0046,28.6633],
  57. '南通': [121.1023,32.1625],
  58. '厦门': [118.1689,24.6478],
  59. '台州': [121.1353,28.6688],
  60. '合肥': [117.29,32.0581],
  61. '呼和浩特': [111.4124,40.4901],
  62. '咸阳': [108.4131,34.8706],
  63. '哈尔滨': [127.9688,45.368],
  64. '唐山': [118.4766,39.6826],
  65. '嘉兴': [120.9155,30.6354],
  66. '大同': [113.7854,39.8035],
  67. '大连': [122.2229,39.4409],
  68. '天津': [117.4219,39.4189],
  69. '太原': [112.3352,37.9413],
  70. '威海': [121.9482,37.1393],
  71. '宁波': [121.5967,29.6466],
  72. '宝鸡': [107.1826,34.3433],
  73. '宿迁': [118.5535,33.7775],
  74. '常州': [119.4543,31.5582],
  75. '广州': [113.5107,23.2196],
  76. '廊坊': [116.521,39.0509],
  77. '延安': [109.1052,36.4252],
  78. '张家口': [115.1477,40.8527],
  79. '徐州': [117.5208,34.3268],
  80. '德州': [116.6858,37.2107],
  81. '惠州': [114.6204,23.1647],
  82. '成都': [103.9526,30.7617],
  83. '扬州': [119.4653,32.8162],
  84. '承德': [117.5757,41.4075],
  85. '拉萨': [91.1865,30.1465],
  86. '无锡': [120.3442,31.5527],
  87. '日照': [119.2786,35.5023],
  88. '昆明': [102.9199,25.4663],
  89. '杭州': [119.5313,29.8773],
  90. '枣庄': [117.323,34.8926],
  91. '柳州': [109.3799,24.9774],
  92. '株洲': [113.5327,27.0319],
  93. '武汉': [114.3896,30.6628],
  94. '汕头': [117.1692,23.3405],
  95. '江门': [112.6318,22.1484],
  96. '沈阳': [123.1238,42.1216],
  97. '沧州': [116.8286,38.2104],
  98. '河源': [114.917,23.9722],
  99. '泉州': [118.3228,25.1147],
  100. '泰安': [117.0264,36.0516],
  101. '泰州': [120.0586,32.5525],
  102. '济南': [117.1582,36.8701],
  103. '济宁': [116.8286,35.3375],
  104. '海口': [110.3893,19.8516],
  105. '淄博': [118.0371,36.6064],
  106. '淮安': [118.927,33.4039],
  107. '深圳': [114.5435,22.5439],
  108. '清远': [112.9175,24.3292],
  109. '温州': [120.498,27.8119],
  110. '渭南': [109.7864,35.0299],
  111. '湖州': [119.8608,30.7782],
  112. '湘潭': [112.5439,27.7075],
  113. '滨州': [117.8174,37.4963],
  114. '潍坊': [119.0918,36.524],
  115. '烟台': [120.7397,37.5128],
  116. '玉溪': [101.9312,23.8898],
  117. '珠海': [113.7305,22.1155],
  118. '盐城': [120.2234,33.5577],
  119. '盘锦': [121.9482,41.0449],
  120. '石家庄': [114.4995,38.1006],
  121. '福州': [119.4543,25.9222],
  122. '秦皇岛': [119.2126,40.0232],
  123. '绍兴': [120.564,29.7565],
  124. '聊城': [115.9167,36.4032],
  125. '肇庆': [112.1265,23.5822],
  126. '舟山': [122.2559,30.2234],
  127. '苏州': [120.6519,31.3989],
  128. '莱芜': [117.6526,36.2714],
  129. '菏泽': [115.6201,35.2057],
  130. '营口': [122.4316,40.4297],
  131. '葫芦岛': [120.1575,40.578],
  132. '衡水': [115.8838,37.7161],
  133. '衢州': [118.6853,28.8666],
  134. '西宁': [101.4038,36.8207],
  135. '西安': [109.1162,34.2004],
  136. '贵阳': [106.6992,26.7682],
  137. '连云港': [119.1248,34.552],
  138. '邢台': [114.8071,37.2821],
  139. '邯郸': [114.4775,36.535],
  140. '郑州': [113.4668,34.6234],
  141. '鄂尔多斯': [108.9734,39.2487],
  142. '重庆': [107.7539,30.1904],
  143. '金华': [120.0037,29.1028],
  144. '铜川': [109.0393,35.1947],
  145. '银川': [106.3586,38.1775],
  146. '镇江': [119.4763,31.9702],
  147. '长春': [125.8154,44.2584],
  148. '长沙': [113.0823,28.2568],
  149. '长治': [112.8625,36.4746],
  150. '阳泉': [113.4778,38.0951],
  151. '青岛': [120.4651,36.3373],
  152. '韶关': [113.7964,24.7028]
  153. };
  154. var BJData = [
  155. [{name:'北京'}, {name:'上海',value:95}],
  156. [{name:'北京'}, {name:'广州',value:90}],
  157. [{name:'北京'}, {name:'大连',value:80}],
  158. [{name:'北京'}, {name:'南宁',value:70}],
  159. [{name:'北京'}, {name:'南昌',value:60}],
  160. [{name:'北京'}, {name:'拉萨',value:50}],
  161. [{name:'北京'}, {name:'长春',value:40}],
  162. [{name:'北京'}, {name:'包头',value:30}],
  163. [{name:'北京'}, {name:'重庆',value:20}],
  164. [{name:'北京'}, {name:'常州',value:10}]
  165. ];
  166. var SHData = [
  167. [{name:'上海'},{name:'包头',value:95}],
  168. [{name:'上海'},{name:'昆明',value:90}],
  169. [{name:'上海'},{name:'广州',value:80}],
  170. [{name:'上海'},{name:'郑州',value:70}],
  171. [{name:'上海'},{name:'长春',value:60}],
  172. [{name:'上海'},{name:'重庆',value:50}],
  173. [{name:'上海'},{name:'长沙',value:40}],
  174. [{name:'上海'},{name:'北京',value:30}],
  175. [{name:'上海'},{name:'丹东',value:20}],
  176. [{name:'上海'},{name:'大连',value:10}]
  177. ];
  178. var GZData = [
  179. [{name:'广州'},{name:'福州',value:95}],
  180. [{name:'广州'},{name:'太原',value:90}],
  181. [{name:'广州'},{name:'长春',value:80}],
  182. [{name:'广州'},{name:'重庆',value:70}],
  183. [{name:'广州'},{name:'西安',value:60}],
  184. [{name:'广州'},{name:'成都',value:50}],
  185. [{name:'广州'},{name:'常州',value:40}],
  186. [{name:'广州'},{name:'北京',value:30}],
  187. [{name:'广州'},{name:'北海',value:20}],
  188. [{name:'广州'},{name:'海口',value:10}]
  189. ];
  190. var planePath = 'path://M1705.06,1318.313v-89.254l-319.9-221.799l0.073-208.063c0.521-84.662-26.629-121.796-63.961-121.491c-37.332-0.305-64.482,36.829-63.961,121.491l0.073,208.063l-319.9,221.799v89.254l330.343-157.288l12.238,241.308l-134.449,92.931l0.531,42.034l175.125-42.917l175.125,42.917l0.531-42.034l-134.449-92.931l12.238-241.308L1705.06,1318.313z';
  191. var convertData = function (data) {
  192. var res = [];
  193. for (var i = 0; i < data.length; i++) {
  194. var dataItem = data[i];
  195. var fromCoord = geoCoordMap[dataItem[0].name];
  196. var toCoord = geoCoordMap[dataItem[1].name];
  197. if (fromCoord && toCoord) {
  198. res.push({
  199. fromName: dataItem[0].name,
  200. toName: dataItem[1].name,
  201. coords: [fromCoord, toCoord]
  202. });
  203. }
  204. }
  205. return res;
  206. };
  207. var color = ['#a6c84c', '#ffa022', '#46bee9'];
  208. var series = [];
  209. [['北京', BJData], ['上海', SHData], ['广州', GZData]].forEach(function (item, i) {
  210. series.push({
  211. name: item[0] + ' Top10',
  212. type: 'lines',
  213. zlevel: 1,
  214. effect: {
  215. show: true,
  216. period: 6,
  217. trailLength: 0.7,
  218. color: '#fff',
  219. symbolSize: 3
  220. },
  221. lineStyle: {
  222. normal: {
  223. color: color[i],
  224. width: 0,
  225. curveness: 0.2
  226. }
  227. },
  228. data: convertData(item[1])
  229. },
  230. {
  231. name: item[0] + ' Top10',
  232. type: 'lines',
  233. zlevel: 2,
  234. effect: {
  235. show: true,
  236. period: 6,
  237. trailLength: 0,
  238. symbol: planePath,
  239. symbolSize: 15
  240. },
  241. lineStyle: {
  242. normal: {
  243. color: color[i],
  244. width: 1,
  245. opacity: 0.4,
  246. curveness: 0.2
  247. }
  248. },
  249. data: convertData(item[1])
  250. },
  251. {
  252. name: item[0] + ' Top10',
  253. type: 'effectScatter',
  254. coordinateSystem: 'geo',
  255. zlevel: 2,
  256. rippleEffect: {
  257. brushType: 'stroke'
  258. },
  259. label: {
  260. normal: {
  261. show: true,
  262. position: 'right',
  263. formatter: '{b}'
  264. }
  265. },
  266. symbolSize: function (val) {
  267. return val[2] / 8;
  268. },
  269. itemStyle: {
  270. normal: {
  271. color: color[i]
  272. }
  273. },
  274. data: item[1].map(function (dataItem) {
  275. return {
  276. name: dataItem[1].name,
  277. value: geoCoordMap[dataItem[1].name].concat([dataItem[1].value])
  278. };
  279. })
  280. });
  281. });
  282. option = {
  283. backgroundColor: '#404a59',
  284. title : {
  285. text: '模拟迁徙',
  286. subtext: '数据纯属虚构',
  287. left: 'center',
  288. textStyle : {
  289. color: '#fff'
  290. }
  291. },
  292. tooltip : {
  293. trigger: 'item'
  294. },
  295. legend: {
  296. orient: 'vertical',
  297. top: 'bottom',
  298. left: 'right',
  299. data:['北京 Top10', '上海 Top10', '广州 Top10'],
  300. textStyle: {
  301. color: '#fff'
  302. },
  303. selectedMode: 'single'
  304. },
  305. geo: {
  306. map: 'china',
  307. label: {
  308. emphasis: {
  309. show: false
  310. }
  311. },
  312. roam: true,
  313. itemStyle: {
  314. normal: {
  315. areaColor: '#323c48',
  316. borderColor: '#404a59'
  317. },
  318. emphasis: {
  319. areaColor: '#2a333d'
  320. }
  321. }
  322. },
  323. series: series
  324. };
  325. // 使用刚指定的配置项和数据显示图表。
  326. myChart.setOption(option);
  327. </script>
  328. </body>
  329. </html>